Extensions 1→N→G→Q→1 with N=C23×C6 and Q=S3

Direct product G=N×Q with N=C23×C6 and Q=S3
dρLabelID
S3×C23×C696S3xC2^3xC6288,1043

Semidirect products G=N:Q with N=C23×C6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C23×C6)⋊1S3 = C3×A4⋊D4φ: S3/C1S3 ⊆ Aut C23×C6366(C2^3xC6):1S3288,906
(C23×C6)⋊2S3 = C2×C6×S4φ: S3/C1S3 ⊆ Aut C23×C636(C2^3xC6):2S3288,1033
(C23×C6)⋊3S3 = C3×C22⋊S4φ: S3/C1S3 ⊆ Aut C23×C6246(C2^3xC6):3S3288,1035
(C23×C6)⋊4S3 = (C2×C6)⋊4S4φ: S3/C1S3 ⊆ Aut C23×C6366(C2^3xC6):4S3288,917
(C23×C6)⋊5S3 = C22×C3⋊S4φ: S3/C1S3 ⊆ Aut C23×C636(C2^3xC6):5S3288,1034
(C23×C6)⋊6S3 = (C2×C6)⋊S4φ: S3/C1S3 ⊆ Aut C23×C6246(C2^3xC6):6S3288,1036
(C23×C6)⋊7S3 = C3×C244S3φ: S3/C3C2 ⊆ Aut C23×C624(C2^3xC6):7S3288,724
(C23×C6)⋊8S3 = C2×C6×C3⋊D4φ: S3/C3C2 ⊆ Aut C23×C648(C2^3xC6):8S3288,1002
(C23×C6)⋊9S3 = C6224D4φ: S3/C3C2 ⊆ Aut C23×C672(C2^3xC6):9S3288,810
(C23×C6)⋊10S3 = C22×C327D4φ: S3/C3C2 ⊆ Aut C23×C6144(C2^3xC6):10S3288,1017
(C23×C6)⋊11S3 = C24×C3⋊S3φ: S3/C3C2 ⊆ Aut C23×C6144(C2^3xC6):11S3288,1044

Non-split extensions G=N.Q with N=C23×C6 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C23×C6).1S3 = C6×A4⋊C4φ: S3/C1S3 ⊆ Aut C23×C672(C2^3xC6).1S3288,905
(C23×C6).2S3 = C2×C6.S4φ: S3/C1S3 ⊆ Aut C23×C672(C2^3xC6).2S3288,341
(C23×C6).3S3 = C23.D18φ: S3/C1S3 ⊆ Aut C23×C6366(C2^3xC6).3S3288,342
(C23×C6).4S3 = C22×C3.S4φ: S3/C1S3 ⊆ Aut C23×C636(C2^3xC6).4S3288,835
(C23×C6).5S3 = C24⋊D9φ: S3/C1S3 ⊆ Aut C23×C6366(C2^3xC6).5S3288,836
(C23×C6).6S3 = C2×C6.7S4φ: S3/C1S3 ⊆ Aut C23×C672(C2^3xC6).6S3288,916
(C23×C6).7S3 = C6×C6.D4φ: S3/C3C2 ⊆ Aut C23×C648(C2^3xC6).7S3288,723
(C23×C6).8S3 = C2×C18.D4φ: S3/C3C2 ⊆ Aut C23×C6144(C2^3xC6).8S3288,162
(C23×C6).9S3 = C244D9φ: S3/C3C2 ⊆ Aut C23×C672(C2^3xC6).9S3288,163
(C23×C6).10S3 = C23×Dic9φ: S3/C3C2 ⊆ Aut C23×C6288(C2^3xC6).10S3288,365
(C23×C6).11S3 = C22×C9⋊D4φ: S3/C3C2 ⊆ Aut C23×C6144(C2^3xC6).11S3288,366
(C23×C6).12S3 = C2×C625C4φ: S3/C3C2 ⊆ Aut C23×C6144(C2^3xC6).12S3288,809
(C23×C6).13S3 = C24×D9φ: S3/C3C2 ⊆ Aut C23×C6144(C2^3xC6).13S3288,839
(C23×C6).14S3 = C23×C3⋊Dic3φ: S3/C3C2 ⊆ Aut C23×C6288(C2^3xC6).14S3288,1016
(C23×C6).15S3 = Dic3×C22×C6central extension (φ=1)96(C2^3xC6).15S3288,1001

׿
×
𝔽