extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23xC6).1S3 = C6xA4:C4 | φ: S3/C1 → S3 ⊆ Aut C23xC6 | 72 | | (C2^3xC6).1S3 | 288,905 |
(C23xC6).2S3 = C2xC6.S4 | φ: S3/C1 → S3 ⊆ Aut C23xC6 | 72 | | (C2^3xC6).2S3 | 288,341 |
(C23xC6).3S3 = C23.D18 | φ: S3/C1 → S3 ⊆ Aut C23xC6 | 36 | 6 | (C2^3xC6).3S3 | 288,342 |
(C23xC6).4S3 = C22xC3.S4 | φ: S3/C1 → S3 ⊆ Aut C23xC6 | 36 | | (C2^3xC6).4S3 | 288,835 |
(C23xC6).5S3 = C24:D9 | φ: S3/C1 → S3 ⊆ Aut C23xC6 | 36 | 6 | (C2^3xC6).5S3 | 288,836 |
(C23xC6).6S3 = C2xC6.7S4 | φ: S3/C1 → S3 ⊆ Aut C23xC6 | 72 | | (C2^3xC6).6S3 | 288,916 |
(C23xC6).7S3 = C6xC6.D4 | φ: S3/C3 → C2 ⊆ Aut C23xC6 | 48 | | (C2^3xC6).7S3 | 288,723 |
(C23xC6).8S3 = C2xC18.D4 | φ: S3/C3 → C2 ⊆ Aut C23xC6 | 144 | | (C2^3xC6).8S3 | 288,162 |
(C23xC6).9S3 = C24:4D9 | φ: S3/C3 → C2 ⊆ Aut C23xC6 | 72 | | (C2^3xC6).9S3 | 288,163 |
(C23xC6).10S3 = C23xDic9 | φ: S3/C3 → C2 ⊆ Aut C23xC6 | 288 | | (C2^3xC6).10S3 | 288,365 |
(C23xC6).11S3 = C22xC9:D4 | φ: S3/C3 → C2 ⊆ Aut C23xC6 | 144 | | (C2^3xC6).11S3 | 288,366 |
(C23xC6).12S3 = C2xC62:5C4 | φ: S3/C3 → C2 ⊆ Aut C23xC6 | 144 | | (C2^3xC6).12S3 | 288,809 |
(C23xC6).13S3 = C24xD9 | φ: S3/C3 → C2 ⊆ Aut C23xC6 | 144 | | (C2^3xC6).13S3 | 288,839 |
(C23xC6).14S3 = C23xC3:Dic3 | φ: S3/C3 → C2 ⊆ Aut C23xC6 | 288 | | (C2^3xC6).14S3 | 288,1016 |
(C23xC6).15S3 = Dic3xC22xC6 | central extension (φ=1) | 96 | | (C2^3xC6).15S3 | 288,1001 |