extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C6)⋊1S3 = C3×A4⋊D4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 36 | 6 | (C2^3xC6):1S3 | 288,906 |
(C23×C6)⋊2S3 = C2×C6×S4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 36 | | (C2^3xC6):2S3 | 288,1033 |
(C23×C6)⋊3S3 = C3×C22⋊S4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 24 | 6 | (C2^3xC6):3S3 | 288,1035 |
(C23×C6)⋊4S3 = (C2×C6)⋊4S4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 36 | 6 | (C2^3xC6):4S3 | 288,917 |
(C23×C6)⋊5S3 = C22×C3⋊S4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 36 | | (C2^3xC6):5S3 | 288,1034 |
(C23×C6)⋊6S3 = (C2×C6)⋊S4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 24 | 6 | (C2^3xC6):6S3 | 288,1036 |
(C23×C6)⋊7S3 = C3×C24⋊4S3 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 24 | | (C2^3xC6):7S3 | 288,724 |
(C23×C6)⋊8S3 = C2×C6×C3⋊D4 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 48 | | (C2^3xC6):8S3 | 288,1002 |
(C23×C6)⋊9S3 = C62⋊24D4 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 72 | | (C2^3xC6):9S3 | 288,810 |
(C23×C6)⋊10S3 = C22×C32⋊7D4 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 144 | | (C2^3xC6):10S3 | 288,1017 |
(C23×C6)⋊11S3 = C24×C3⋊S3 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 144 | | (C2^3xC6):11S3 | 288,1044 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C23×C6).1S3 = C6×A4⋊C4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 72 | | (C2^3xC6).1S3 | 288,905 |
(C23×C6).2S3 = C2×C6.S4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 72 | | (C2^3xC6).2S3 | 288,341 |
(C23×C6).3S3 = C23.D18 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 36 | 6 | (C2^3xC6).3S3 | 288,342 |
(C23×C6).4S3 = C22×C3.S4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 36 | | (C2^3xC6).4S3 | 288,835 |
(C23×C6).5S3 = C24⋊D9 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 36 | 6 | (C2^3xC6).5S3 | 288,836 |
(C23×C6).6S3 = C2×C6.7S4 | φ: S3/C1 → S3 ⊆ Aut C23×C6 | 72 | | (C2^3xC6).6S3 | 288,916 |
(C23×C6).7S3 = C6×C6.D4 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 48 | | (C2^3xC6).7S3 | 288,723 |
(C23×C6).8S3 = C2×C18.D4 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 144 | | (C2^3xC6).8S3 | 288,162 |
(C23×C6).9S3 = C24⋊4D9 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 72 | | (C2^3xC6).9S3 | 288,163 |
(C23×C6).10S3 = C23×Dic9 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 288 | | (C2^3xC6).10S3 | 288,365 |
(C23×C6).11S3 = C22×C9⋊D4 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 144 | | (C2^3xC6).11S3 | 288,366 |
(C23×C6).12S3 = C2×C62⋊5C4 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 144 | | (C2^3xC6).12S3 | 288,809 |
(C23×C6).13S3 = C24×D9 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 144 | | (C2^3xC6).13S3 | 288,839 |
(C23×C6).14S3 = C23×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C23×C6 | 288 | | (C2^3xC6).14S3 | 288,1016 |
(C23×C6).15S3 = Dic3×C22×C6 | central extension (φ=1) | 96 | | (C2^3xC6).15S3 | 288,1001 |